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numbers : wake interference and possibly Coriolis 
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Matched asymptotic expansion methods are used to establish governing equations of 
Oseen type for a tethered sphere that describes a circular path and a stationary 
sphere subjected to a rotating fluid in an ‘antisedimentation ’ tube. The two cases are 
shown to be significantly different, in contrast to an earlier presentation (Davis & 
Brenner 1986)’ because only the latter is subject to the Coriolis force. The evaluation 
of the force and torque coefficients is much improved, enabling better comparisons 
to be made with the classical rectilinear trajectory result of Proudman & Pearson 
(1957). 

1. Introduction 
This paper seeks to correct an error and improve the analysis in an earlier paper 

(Davis & Brenner 1986, referred to hereinafter as I), that principally addressed the 
steady rotation of a tethered sphere through a viscous fluid at small, non-zero Taylor 
and Reynolds numbers, the Rossby number being assumed to be of order unity. 
Since the sphere-centre trajectory is closed upon itself, the sphere moves continuously 
through the residual disturbance left by its own wake and hence the drag that it 
experiences is likely to differ from that appropriate to the same translational 
Reynolds number in rectilinear instead of curvilinear motion. Such differences are 
necessarily absent from the quasi-static Stokes limit and only become possible when 
fluid inertial and/or Coriolis and/or centrifugal effects are sensible. It will be shown 
that the ‘antisedimentation’ rotating tube device of Dill & Brenner (1983) and 
Nadim, Cox & Brenner (1985), presented in I as being essentially described by the 
tethered sphere analysis, differs significantly from the latter in being subject to the 
Coriolis force which plays no role in the correct governing equations for the fluid 
motion generated by the tethered sphere. 

After first describing why the Coriolis force enters one calculation but not the 
other, numerical values are given for the non-Stokesian contributions to the 
hydrodynamic force and torque, thus enabling the drag results to be compared with 
the rectilinear Oseen (1927) and Proudman & Pearson (1957) Reynolds number 
correction to Stokes law. These evaluations are based on the leading order, outer field 
solutions for the two problems, obtained by the use of matched asymptotic 
expansions. The details of the inner fields, being the same as I in each case, are 
omitted so each analysis in the subsequent sections starts with an Oseen linearization. 
The corrected versions of the analysis in I are significantly improved by expressing 
the Fourier sums as integrals over a semi-infinite range instead of one period and thus 
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enabling the triple integrals, similar to those computed in I, to be reduced to single 
or double integrals with simpler integrands. Formulae quoted without reference may 
be found in Gradshteyn & Ryzhik (1980). 

2. Basic equations and discussion 
In  general, the equations of motion of an incompressible Newtonian fluid from the 

viewpoint of an observer fixed in a steadily rotating system with angular velocity a 
are (Greenspan 1968) 

av' 1 
- + u' - V'V' + 21(2 x v' = - - V'p' + VV2V' , 
at' P* 

V ' .  v' = 0, (2.2) 

(2.3) with 

in which the true fluid-mechanical pressurc 17' is augmented by the fictitious fluid 
pressure due to the centrifugal force on the fluid. Here v and p* denote the kinematic 
viscosity and density respectively and r' is the position vector of a fluid point 
measured from an origin lying on the axis of rotation which is taken to be the z-axis, 
i.e. Sa = Q2. The external body forcc due to gravity has been absorbed into p'. 

Thus the lengthscale (v/Q)f and timescale Q-l are given so a velocity scale U 
enables a Reynolds number to be defined by 

p' = T' . -L zp * (0 x 0, 

RP = CJ/(vSZ);. (2.4) 
Then, on introducing dimensionless variables by setting 

the governing equations (2.1)-(2.3) become 

(2.6) 
av 
at 
- + R e ( v - V ) u + 2 2 " x  u = - V P + V 2 v ,  

Now, if the rigid body rotation corresponding to the rotating axes is subtracted out 

(2.9) 
by writing 

then V - q  = 0, the pressure/densitjr ratio is Z7 and 

u = q - ( & - I  2" x r ,  

-+Rp aq ( q - V ) q - ( Z x  r ) - V q + i ? x q  = -VZ7+V2q, (2.10) 
at 

i.e. on introducing cylindrical polar c~)ortlinates (p .  4, z ) ,  

(2.11) 

Similarly. if in the  equations of motion refc~rcd to fixcd axcs, namely (2.7) and 

(2.12) au 
- + R P ( u . V ) V  = -VZ7+V2uV, 
at 
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a positive rigid-body rotation is subtracted out by writing 

then V - q  = 0 and 
u = q + (Re)-' f x r ,  (2.13) 

where P is related to 17 by (2.8). Here the time derivatives are computed by holding 
the spatial coordinates fixed in either frame of reference. 

If the fluid is at rest in a fixed frame a t  infinity or at a fixed cylindrical boundary 
and the rotation is due to some forcing mechanism such as the tethered sphere 
describing a circular trajectory, then the unperturbed flow is given by u = 0 = W17 in 
(2.12) or u = - (Re)- ' i  x r ,  V P  = 0 in (2.6), i.e. q = 0 = VI7 in (2.11) and equivalent 
equations for the perturbation flow are obtained in the Stokes limit by seeking 
solutions of the form q = q(p ,  $, z )  in (2.11) or u = u(p, $-t ,  z )  in (2.12). Alternatively, 
if the rotation is applied at infinity or a t  a fixed cylindrical boundary such as in the 
anti-sedimentation tube, then the unperturbed flow is given by u = 0 = VP in (2.6) 
or u = (Re)- ' i  x r in (2.12), i.e. q = 0 = V P  in (2.14) and equivalent equations for the 
perturbation flow are obtained in the Stokes limit by seeking solutions of the form 
q = 4(p ,$ ,z )  in (2.14) or u E u(p,$+t ,z)  in (2.6). 

The cases are distinguished by the presence or absence of the Coriolis force 
according to whether there is a rotation in thc far field. Their fundamental difference 
can be readily illustrated by means of the velocity representation 

q = v x v x (2f ) + V  x (Zg), 

which eventually yields, in the two cases 

or 

[v ' -$pf+4sEi= a2f 0, 

[ :$I [ 3 v2+- V"=O= v 2 + -  9,  

(2.15) 

(2.16) 

Thus the sixth-order system exhibited by the characteristic polynomial in (4.5) 
decouples, in the absence of the Coriolis term, into two systems of fourth and second 
order. It should be noted that, though (2.15) fortuitously retains constant coefficients 
after introduction of the azimuthal convection, the solutions are considerably more 
complicated than for the sixth-order system involving only rotation (Herron, Davis 
& Bretherton 1975; Smith 1981) or even rotation and linear convection (Childress 
1964). 

As in I, fi and B are defined to be the dimensionless forms of the sphere radius a 
and the 'path'  radius b ( %  a ) ,  namely, from ( 2 . 5 ) ,  

(2.17) 

with B assumed to be O(1) and hence 74 6 1. The Taylor number is related to the 
Reynolds number Re in (2.4) by Re = @B. The dimensionless force F and torque Mf 
exerted on the sphere by the fluid arc given by 

(2.18) F = -6n[( 1 + 74CY)f-- @Cz f + O(T)] ,  1 
M = -87~[1-@C,+O(T)1. J 
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B 

(0) 
0.5 
1 .o 
1.5 
2.0 
2.5 
3.0 
3.5 
4.0 
4.5 
5.0 

cz 
1142 
0.6849 
0.6255 
0.5461 
0.4650 
0.3937 
0.3361 
0.2914 
0.2566 
0.2291 
0.2069 

c, 
1142 
0.7193 
0.7596 
0.8355 
0.9506 
1.1010 
1.2778 
1.4712 
1.6739 
1.8816 
2.0919 

cz 
0 

0.0848 
0.1510 
0.1901 
0.2059 
0.2081 
0.2051 
0.2016 
0.1988 
0.1969 
0.1956 

C 

1.4386 
0.7596 
0.5570 
0.4753 
0.4404 
0.4259 
0.4203 
0.4185 
0.4181 
0.4184 

00 

TABLE 1. Numerical values, for various radii of order unity, of the force, torque and normalized 
Reynolds-number drag coefficients for the tethered sphere. (The extreme value B = 0 is 
inadmissible but is included here only for completeness.) 

B 

0.5 
1 .o 
1.5 
2 .o 
2.5 
3.0 
3.5 
4.0 
4.5 
5.0 

(0) 

c, 
0.0517 
0.0630 
0.0747 
0.0873 
0.0942 
0.0948 
0.0905 
0.0839 
0.0767 
0.0702 
0.0646 

cv 
0.5241 
0.5485 
0.6193 
0.7293 
0.8680 
1.0248 
1.1910 
1.3617 
1.5308 
1.7085 
1.8836 

cz 
0 

0.0072 
0.0108 
0.0099 
0.0065 
0.0028 

- 0.0003 
-0.0027 
-0.0047 
-0.0066 
-0.0086 

C 

1.0970 
0.6193 
0.4862 
0.4340 
0.4099 
0.3970 
0.3891 
0.3827 
0.3797 
0.3767 

aJ 

TABLE 2. Numerical values, for various radii of order unity, of the force, torque and normalized 
Reynolds-number drag coefficients for the sphere in an anti-sedimentation tube. (The extreme 
value B = 0 is inadmissible but is included here only for completeness.) 

where the dependence of the coefficients C,, C, and C, on B is derived in the 
subsequent sections. 

Though the two cases have the same relative motion of sphere and fluid, they are 
distinguished by the appearance of the Coriolis force when there is a rotation in the 
far field, as explained above, and by the different formulae for the force and torque 
coefficients in (3.17) and (4.10). The results displayed in Tables 1 and 2 exhibit few 
similarities, the most notable being the behaviour of C = C,/B as B increases. Since 
the dimensionless force exerted by the sphere on the fluid in the direction of relative 
motion is, from (2.18), 6x(1 +CRe) ,  the values of C enable comparison to be made 
with the classical Oseen (1927) and Proudman & Pearson (1957) rectilinear Stokes- 
law drag correction coefficient. As remarked in I, the inner field equations become 
identical in the B + co limit but the same is not true of the outer equations discussed 
here because the convective terms in (3.1) and (4.1) and the Coriolis term in (4.1) 
remain, despite the Taylor number being identically zero. Indeed, the B-t co limit is 
inadmissible in this analysis, since only B-values of order unity are consistent with 
this scaling hypothesis Re = @B and choice of origin. Thus i t  is of interest that the 
displayed values of C, whose accuracy worsens as B increases, become very close or 
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moderately close to  $ for the anti-sedimentation tube and tethered sphere 
respectively. Though the same convective terms and half the Coriolis force were 
retained in I, exact calculations for the R = 0 case indicate that the results obtained 
in I had possibly good reason to be unrelated to  the ‘averages’ of those listed here 
in tables 1 and 2. 

On the other hand, significant improvement is achieved in the subsequent analysis 
by reducing the triple integrals to  single or double integrals with the aid of a 
rearrangement that is analogous to  the formula for the Laplace transform of a 
periodic function. I n  physical terms, the expressions (3.10), (3.16), (4.8) and (4.9) 
cxhibit the relevance of the entire history of previous rotations in determining the 
wake interference effects. 

3. The tethered sphere 
A sphere of radius a describes a path of radius b ( $  a) a t  uniform speed U = 52b. 

Since the inner field was considered adequately in I ,  it  suffices here to  note that the 
outer field sees the sphere’s motion as a point force of magnitude 6np*vUa which, 
after non-dimensionalization, is expressed by including the forcing term 
67&)%(x-B) 6(y) 6(x) on the right-hand side of (2.1 1). Thus, on writing q - f i Q ( r ) ,  
I7 - fin0(r) and including the point force term in (2.1 l) ,  the perturbation field is, to  
leading order, governed by 

The important error in I was to  retain in (3.1) the tzrm -z“x Q which should be 
cancelled by the $-derivatives of the unit vectors $,# in aQ/a$ (see (2.10), (2.11)). 
When appropriate changes are made to  the analysis in $4.2 of I, the correct, 
simplified expressions for the velocity components satisfying (3.1)-(3.3) and the 
z-component of vorticity are found to be 

EJrn+l(PE) 

(A2+t2-im) 

m 

Qp+iQ4 = -- iA(:cosAzdh C eim$ 
m--m 

The denominators are indicative of the second- and fourth-order equations (2.16). 
Now, if the periodic functions s(q5), S(q5) are defined by 
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then it may readily bc shown that 

S($)  = ~ ~ , ~ ( S i e ~ p [ - ( . \ 2 + 5 2 ) ( $ - O ) l d $ .  (3.8) 

} dllr. (3.9) 

Thc summations s($) that appear in (3.4)-(3.6) have closed form expressions listed 
in thc Appendix and, when (3.8) is applied to  (3.6), the h and 5 integrals can be 
evaluated exactly to  yicld 

3 "tB-pcos$ 22 + p2 +B2 - 2pB cos $ 
4($ - +) 

w, = gJ4 ($-+); exp{ - 

In  particular, the rotation induced a t  the point singularity which represents the 
sphere is given by 

(3.10) 

which, when substituted in 

M = -8K[ 1 - p + ( w z ) B . 0 3  0 )  + O ( T ) ] ,  (3.11) 

determines the torque coefficient C, in (2.18). 
The dimensionless force is given similarly by (Herron et al. 1975) 

I; = -~xV-@{(Q,-Q,Y)(B. 0 . 0 )  f + (&~-&~'),,,o,O,g}+O(T)l, (3.12) 

where Q@) denotes the Stokes solution which must be subtracted out in order to 
determine the reflected velocity due to  the inertia terms in (3.1). Thus the 
summations required in (3.5) are, in the notation of (3.7), of the form 

S(0)-- s(o) = J: [S($)--S(0)1exP[-(h2+52)$1d$, (3.13) 
A2 + t2 

(Q, + iQ4-&:? - iQr) ) (B,  0 . 0 )  

and hence 

-./o[2B$(l-q2)isina$]exp ( - i ~ ) +  l}d$. (3.14) 

= $7, 6 = Xt(1 -$)a. (3.15) 

In  the first term of (3.14), the (-integration has been evaluated, as in (3.9), by using 
the formula 

where the 'polar' coordinates x, 7 are defined by 

loa exp ( - 015') J,,(PE) C+l d t  = - 2a ("exp( - 2a -Z). 
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In the second term of (3.14), the 7-integrations can be derived from the result 

sin 01 
J0[a( 1 - 7’)$] dy = - , 

CL 

after which the 2-integrations are elementary. Thus (3.14) can be reduced to  the form 

( Q p - Q ~ ’ ) ( ~ , o . o )  + i ( Q ~ - Q ~ ) ) ( ~ , o , o )  

g+k(l-exp[-i$])exp 

where the error function is defined by 

erf(z) = q[exp(-y2)dy. 7cT 

Values of the integrals in (3.10) and (3.16) have been computed numerically in 
order to tabulate in table 1 the B-dependent force and torque coefficients in the 
formulae (2.18) where (cf. (3.11), (3.12)) 

cz = (Qp-Q:S))(B,o,o), C, = (Q$-QF))(B,o,o), cz = i ( ~ Z ) ( B , o , o ) -  (3.17) 

The additional reflected velocity due to the presence of a fixed cylindrical wall 
a t  p = D (> B )  involves, for each m =I= 0, Bessel functions with complex arguments. 
The dominant contribution, for D 4 B, arises from the swirling motion given by the 
m = 0 terms in (3.4) and (3.5), namely 

= 2 J I,(Bh) K, (ph)  cos hz dh (p > B) .  
= o  

The reflected velocity a t  the singularity is then given by 

and evidently is similar to that for a stokeslet moving parallel to a plane wall a t  
distance (D-B) namely, 3/[4(D-B)] (see Happel & Brenner 1973). Thus (D-B)-’ is 
a measure of the accuracy of the values in table 1 when the flow occurs within a 
concentric cylindrical container of radius D. 

4. Antisedimentation tube 
The ‘antisedimentation’ tube (Dill & Brenner 1983; Nadim et al. 1985), described 

in I, is a device that permits a non-neutrally buoyant sphere to remain permanently 
suspended against the force of gravity by balancing its downward settling motion 
against an upward fluid current created by the steady rotation of a fluid-filled 
circular cylinder rotating about a horizontal axis. The simplified model considered in 
I neglects the wall effects and regards the sphere of radius a as fixed with its centre 
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at distance b (4 a )  from the axis of rotation and in the same horizontal plane. 
Thus the outer field sees the fixed sphere as a point force of magnitude 6qPUa 
which, after non-dimensionalization, is expressed by including the forcing term 
-Sn@j%(x-B) S(y) S(z) on the right-hand side of (2.14), where T and B are defined 
by (2.17). 

Hence, on writing q - @Q(r) ,  P - @<(r) and including the point force term in 
(2.14), the perturbation field is, to  leading order, governed by 

V - Q  = 0, 
Q + O  asIrl+co. 

Here the Coriolis term has the usual factor 2, omitted in I, and there is a sign change 
in the linearized inertia term of Oseen type and the point force term owing to the 
reversal of the relative motion of the sphere and fluid. In  making the necessary 
changes to the analysis of $4.2 of I, it is convenient to  use e-im$ dependence whence 
the correct expressions for the velocity components and z-component of vorticity are 
found to be 

m 

cos hz dh C e-im$ IOm 52Jm(pE) { ( A 2  + t2) (A2 + 6' - im) [Jm-,(B() 
m--m A m  

with x , y  defined by (3.15). This denominator is indicative of the sixth-order equation 
(2.15). 

Let Q(H) and Q(') denote the inertialess and stokeslet solutions respectively, as in 
I. Then ( u : ~ ) ) ( ~ ,  o,  o) and ( Q F ) ) ( B ,  o, o) are evidently zero and, from (4.3) with use of the 
Appendix, 

Thus, as shown by Herron et al. (1975), 

(Q;H))(B,o,o) = - Q ,  ( & ; H H ' - & f ) ) ( B , o , o )  = 9 ,  
and hence the dimensionless force F and torqueM2 exerted on the sphere by the fluid 
are given by 

+ (&$ - &iHIH')(B, ,,, o )  91 + O( T)) ,  (4.6) F = -6nV @[ - $Y i- 19 + (&, - ) ( B ,  0 , o )  

M = - 8 r c [ l + ~ @ ( ~ , ) ( ~ , ~ , ~ ) + O ( T ) ] .  (4.7) 
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In  evaluating (4.3) and (4.4) a t  (B, 0, 0), the following formulae, analogous to 
(3.13), are required. 

[s($) - s(O)] e-x* cos 277) d$, 
= Jom 

[s($)-s(O)] e-x*sin27$d$. 
= Jom 

Thus, on using the summations listed in the Appendix, it  follows from (4.3) and (4.4) 
that 

x [( 1 - v2) J2[2B$( 1 - r2)4sin a$] + (1 + q2) {Jo[2Bxi( 1 - q2)f sin a$] e-'* - l}] d$ 

+ 2i7 Iom e-X* sin 2q${J0[2Bx4( 1 - q2)'sin a$] e-'* - l} d$ 

x {( 1 - cos $) cos 27$-7 sin $sin 27$} d$. 

The 7-integrations involving Bessel functions can be derived from the result 

sin [ (a2 + 4$')'] s,' Jo[a( 1 - q2)'] cos 27$ d7 = 
(012 + 4$2)t ' 

and the others correspond to the simpler case a = 0. Hence 

(&p-&~H))(B.O.O)+i(&~-Q~HH))(B,O,O) = -gJ; J;x;e-x*dxd$ 

--[ sin 2v 1 - e ~ - ~  " (1 + el*)] - 7 sin2$ + (- sin2$ - cos 2$) ( + L)} (4.8) 
2v 2$ v2 @ 

cosfv)(l-cos@--sin$ 2v2 , (4.9) x -sin$sin2v+ -- 
311- >I sin 2v 

{: ( 2v 

where v2 = $2 + B2x sin2 i$. 
If the 2-integrations are performed first, then convergence will depend on the 

behaviour of the outer integrands as $ + O .  In this limit, it  may be shown that { } and 
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v P {  } in the respective double integrals are asymptotic to ti$ and &h2 which are 
independent of v and hence x. Thus the outer integrands are respectively asymptotic 
to  l/2(n$)i and -3B/16O(n$)i as $ + O  and convergence is assured. 

Values of the integrals in (4.8), (4.9) have been computed numerically in order to 
tabulate in table 2 the B-dependent force and torque coefficients in the formulae 
(2.18) where (cf. (4.6), (4.7)) 

P P ( B , o , o ) ,  'g = $+(&@-&$HH')(B,O,O), c, = -'( 2 w z ) ( B , O , O )  (4.10) C", = $- (& - Q'H') 

An estimate of the error due to  the container of radius D P B is precluded by the 
sixth-order denominator in (4.5). 

This work was partially supported by EPSCOR in Alabama, grant RII8996152. 

Appendix 

(1980), are of the type s ($ )  in (3.7) 
The following summations, derived from formula 8.530.2 of Gradshteyn & Ryzhik 
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